
CI/CD for Dynamics/PowerApps

The Building Blocks

Name: Alex Shlega

Title: Dynamics 365 Consultant/Developer/Solution Architect

Blog: https://www.itaintboring.com

Linkedin: https://www.linkedin.com/in/alexandershlega/

Twitter: https://twitter.com/ashlega

About myself

https://www.itaintboring.com
https://www.linkedin.com/in/alexandershlega/
https://twitter.com/ashlega

CI/CD Puzzle

Packaging

Testing

Deployment

Orchestration

● Solutions

● Solution Packager
● Easy Repro

● Fake XRM

● Build Tools

● Configuration Data
● DevOps

Packaging: Managed vs Unmanaged

● Microsoft recommends managed solutions

for any environment other than dev

● At least two reasons for that: ability to

prevent modifications of certain solution

components, and, also, ability to delete

components by installing a newer version of

the managed solution

● Does this settle the old argument? Not

necessarily, but, since managed solutions

are recommended, it’s a good enough reason

to at least try using them

Packaging: Solution History

● Which solutions were involved

● What happened to them (export, import, etc)

● When did it happen

Packaging: Solution Layers

For the individual solution components (entities,

forms, fields, etc), we can now see the layers of

solutions which included changes to that

component

Packaging: SolutionPackager

● Recommended by Microsoft for source control “integration”

● Makes XML merge somewhat easier

● While packing, provides self-validation

● Deployment to the target environment ensures ultimate solution validation

● Download script: https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget

Source Control

Solution.zip Solution.zip
Extract Pack

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget

Configuration Migration Tool

● Works for configuration data migration

● Earlier, it would have to be started manually. As

an alternative, package deployer can utilize

configuration migration tool files

● There is a powershell module now:

https://www.powershellgallery.com/packages/Microsoft.Xrm.

Tooling.ConfigurationMigration

● Advanced filtering and/or data transformation is

still not supported

https://www.powershellgallery.com/packages/Microsoft.Xrm.Tooling.ConfigurationMigration

Testing: EasyRepro

● The purpose of this library is to provide

Dynamics customers the ability to facilitate

automated UI testing for their model-driven

app projects

● It is built on top of Selenium

● It knows how to work with

PowerApps/Dynamics - usually, there is no

need to work with HTML directly

● Can be easily added to the DevOps pipelines

● https://github.com/microsoft/EasyRepro

https://github.com/microsoft/EasyRepro

Orchestration: DevOps

● Build and release pipelines

● Source code repository (git)

● Ability to run PowerShell in the pipelines

● Ability to trigger the pipelines automatically

● Hosted agents

● Public and private projects

Orchestration:

PowerApps Build Tools

● Public Preview since June 20, 2019

● https://powerapps.microsoft.com/en-

us/blog/automate-your-application-lifecycle-

management-alm-with-powerapps-build-tools-

preview/

Import Solution

Export Solution Pack Solution

Unpack Solution

https://powerapps.microsoft.com/en-us/blog/automate-your-application-lifecycle-management-alm-with-powerapps-build-tools-preview/

Demo pipelines

Export and Unpack

● Will export solution

from the branch dev

environment

● Will unpack it

● Will check it into the

repo

Build and Test

(triggers automatically on the master branch)

● Will build managed solution from

the source control

● Will import it into the branch QA

environment

● Will run the test

● Will create build artefacts

Prepare Dev

● Will build unmanaged

solution from the source

control

● Will import it into the

branch Dev

environment

Assumptions for the demo

Everything is already in the source control, always deploying complete solution, no configuration data

Building a pipeline

Get the tools: https://marketplace.visualstudio.com/items?itemName=microsoft-IsvExpTools.PowerApps-

BuildTools

https://marketplace.visualstudio.com/items?itemName=microsoft-IsvExpTools.PowerApps-BuildTools

Demo scenario

A new developer who just joined the team is tasked with adding a new feature.

There are a few steps involved:

● Setting up a dev environment

● Setting up a test environment

● Getting unmanaged solution from the source control into the dev environment

● Implementing new feature in the dev environment

● Running regression tests

● Pushing unpacked solution to the source control (on the branch)

● Re-testing managed solution in the test instance

● Merging into master branch

● Re-testing in the master test instance and creating a build artefact

LET’S REVIEW THE PIPELINES,

PREPARE DEV ENVIRONMENT FOR THE BRANCH,

& MAKE A CHANGE IN THE SOLUTION

Demo Steps

● Create a branch

● Set up branch connection

● Deploy solution from the source control to the new dev

environment using a pipeline

git branch -D Feature1

git push origin --delete

Feature1

Make a change (Add a new field, put it on the form)

Add test.runsettings files to the UIAutomation

● For Dev environment

● For Test environment

Update the tests and run them manually in the

feature Dev environment

Commit and push updated tests to the remote

● git commit -am “test settings”

● git push origin Feature1

Demo Steps

● Export solution and push it into the branch using a pipeline

● Build and test Feature 1 branch

● Merge into Master

● A test on the master branch will start automatically

Export and unpack solution on Feature1 branch

Set up to be started manually - there

is no trigger for this one since

solution updates are happening in

the CDS/Dynamics environment

Run Build and Test pipeline

Set up to

trigger

automatically

on the master

branch only.

Build

artefacts will

be created on

the master

branch only

as well

Merge Feature1 changes into Master

● git checkout Feature1

● git pull origin Feature1

● git checkout master

● git merge -X theirs Feature1

● git add .

● git commit -m “...”

● git push origin master

Run Build and Test pipeline

● Once there is a commit on the

master branch, the test starts

automatically (no need to start it

manually)

● Build artefacts are created as a

result

What have we achieved?

● Started with creating a branch and corresponding dev/test environments

● Used a pipeline to deploy unmanaged solution to the dev environment

from the source control

● Made a configuration change

● Updated the tests

● Used a pipeline to export solution from CDS and put it in the repo

● Used a pipeline to re-test managed solution in the branch test

environment

● Merged all those changes into master

● Build and test pipeline started automatically on the master branch

● As a result, we have everything in the source control, and we have a

managed solution for release (as an artifact on the pipeline)

Known limitations of the build tools

● 2 minutes timeout

● No dedicated “solution upgrade” task

● It’s a relatively involved process

● Requires understanding of git & devops

Other notes

Q & A

