
PowerApps component framework

● Developers were getting bored
● Makers were getting bored
● Everyone was asking for Microsoft to come up with

something cool
● And...

PowerApps
component

framework has
come!

Name: Alex Shlega

Title: Dynamics 365 Consultant/Developer/Solution Architect

Blog: https://www.itaintboring.com

Linkedin: https://www.linkedin.com/in/alexandershlega/

Twitter: https://twitter.com/ashlega

About myself

https://www.itaintboring.com
https://www.linkedin.com/in/alexandershlega/
https://twitter.com/ashlega

https://powerapps.microsoft.com/en-us/blog/announcing-the-general-availability-of-the-powerapps-component-framework-for-model-

driven-applications-and-powerapps-cli/

https://powerapps.microsoft.com/en-us/blog/announcing-the-general-availability-of-the-powerapps-component-framework-for-model-driven-applications-and-powerapps-cli/

● Regular N:N

● Mapped to a TreeView

● All related records are

still traceable through

the N:N (Advanced

Find, reporting, etc)

Example:

N:N in a TreeView

Why PCF?

● Reusable & configurable

(properties/values/configuration)

● Solution-Aware

● No iframes anymore, no additional

form scripts to control the iframe,

much less related “plumbing”

● Can be developed by developers and

easily re-used by makers

Node.js® is a JavaScript runtime

built on Chrome's V8 JavaScript

engine

npm makes it easy for JavaScript developers to share and reuse

code, and makes it easy to update the code that you’re sharing,

so you can build amazing things.

● JavaScript

● JQuery

● Solutions

● React

● Angular

● PowerShellIt is a strict syntactical superset of JavaScript

that adds optional static typing to the

language

What’s involved

https://v8.dev/
https://en.wikipedia.org/wiki/Superset
https://en.wikipedia.org/wiki/JavaScript

Limitations

● Components should bundle all code including external library content into the

primary code bundle

● Sharing libraries across components using library nodes in component

manifest is not supported for public preview

● Preview feature for now - proceed with caution if planning to use in production

*Throughout the preview, there were a couple of releases which were not quite backward compatible

From WebResources to PCF

● TypeScript instead of JavaScript

● CLI tools instead of in-app web resource editor

● HTML elements to be added to the container programmatically

instead of using plain HTML

● Out of the box event plumbing (init, updateView, getOutputs, destroy)

● Configuration through parameters

● Eventually, the same component framework for both types of

PowerApps

● New opportunities for the ISV-s

PCF Gallery (78 components as of September 17, 2019)

https://pcf.gallery/

Mostly free components

with the usual pros and

cons:

you can find awesome

open-source

components there, but

the level of support

behind them will vary

depending on the

willingness and

availability of their

creators.

Developed and maintained by Guido Preite, MVP

https://pcf.gallery/

Who can build PCF components?

● As long as you know the basics of html & javascript, you should be able to

create PCF components

because

● Essentially, it’s front-end development

however

● Just as it used to be with the the web-resources, PCF development can vary

in complexity from being relatively simple to being extremely advanced

Step 1: Get Node.js and NPM

Step 2: Get the tools

$sourceNugetExe = "https://dist.nuget.org/win-x86-commandline/latest/nuget.exe"

$targetNugetExe = ".\nuget.exe"

Remove-Item .\Tools -Force -Recurse -ErrorAction Ignore

Invoke-WebRequest $sourceNugetExe -OutFile $targetNugetExe

Set-Alias nuget $targetNugetExe -Scope Global -Verbose

./nuget install Microsoft.PowerApps.CLI -O .\packages

Step 3: Add tools folder to the path

Step 4: Create a component

● Create a folder for your component

● Initialize the component

pac.exe pcf init --namespace ItAintBoring.PCFControls --name DemoRegexValidation --

template field

npm install

Step 5: Build and test the component

npm run build

npm start (or you can use start npm start to open a new window)

Creating a New Component

Adding Regex Validation Code
&

Testing

Step 6: Create a solution for the component

● Create a folder for the solution project

● Create solution files

cd <solution folder>

pac solution init --publisher-name <enter your publisher name> --publisher-prefix <enter your

publisher prefix>

pac solution add-reference --path <path of your PowerApps component framework project on

disk>

Step 7: Add component to the solution

Step 7: Build the soluion

msbuild /t:build /restore (msbuild must be in the path)

*If you get an error stating that the control directory already exists, delete “obj” and “bin” folders first

*If you want to build a managed package, add add /p:configuration=Release

msbuild /t:build /restore /p:configuration=Release

- Importing the solution

- Model-Driven App Example

- Canvas App Example

A few things to consider

If you are a developer:

● It’s a great new framework for

developers

● There are no iframes

● Typescript is enforced

● It’s easy to build redistributable

components

If you are an organization:

● You can start building reusable

component to utilize them across

different solutions. You will need

somebody with a little more advanced

dev skills to do that

● If you are an ISV, there are apparent

opportunities there

● It’s easy with PCF to utilize third-party

components (but think about their

supportability, too)

If you are a maker:

● You can easily reuse PCF components developed by professional developers

● PCF components are configurable

● May need to pay attention to the future compatibility/maintenance

● Upgrading from pre 1.0.* versions

If a component is created using the CLI tooling version lower than 1.0.*, you may need to rebuild with the updated

version of the tools

● Pay attention to the feature-usage element in the manifest file
<feature-usage>

<uses-feature name="Device.captureAudio" required="true" />

<uses-feature name="Device.captureImage" required="true" />

<uses-feature name="Device.captureVideo" required="true" />

<uses-feature name="Device.getBarcodeValue" required="true" />

<uses-feature name="Device.getCurrentPosition" required="true" />

<uses-feature name="Device.pickFile" required="true" />

<uses-feature name="Utility" required="true" />

<uses-feature name="WebAPI" required="true" />

</feature-usage>

Good to know

Good to know

● Updating the component

If you notice that the changes you are making to the component code are not showing up in

the environment somehow, try increasing component version in the manifest file:

● Can we use React?

Good to know

WebAPI vs Xrm

● There is no Xrm in the Canvas Applications

● There is no WebAPI in the Canvas Applications

● Xrm is unlikely to ever show up in the Canvas Applications

● WebAPI might still show up there

What if you still wanted to use Xrm in your PCF

component while in the model-driven app space?
You could simply take advantage of the fact that PCF component is running within the same form where Xrm is available,

so you could declare Xrm variable:

declare var Xrm: any;

And use it in your typescript code:

var url: string = (<any>Xrm).Utility.getGlobalContext().getClientUrl();

PCF vs Embedded Canvas Apps

● PCF:

HTML & Scripting, Web API, configurable property bindings, professional

developers expertise

● Embedded Canvas Apps:

Various connectors, canvas app look and feel, citizen development expertise

● Go here: https://docs.microsoft.com/en-us/powerapps/developer/component-framework/create-custom-controls-using-pcf

● Pick a sample and start tweaking it to your needs:

Ready to start building your own component?

https://docs.microsoft.com/en-us/powerapps/developer/component-framework/create-custom-controls-using-pcf

Q & A

